H(+)-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans. Studies on topology and stoichiometry of the peripheral subunits.

نویسندگان

  • T Yano
  • T Yagi
چکیده

The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of at least 14 subunits (NQO1-14) and is located in the cytoplasmic membrane. In the present study, topological properties and stoichiometry of the 7 subunits (NQO1-6 and NQO9) of the P. denitrificans NDH-1 in the membranes were investigated using immunological techniques. Treatments with chaotropic reagents (urea, NaI, or NaBr) or with alkaline buffer (pH 10-12) resulted in partial or complete extraction of all the subunits from the membranes. Of interest is that when NaBr or urea were used, the NQO6 and NQO9 subunits remained in the membranes, whereas the other subunits were completely extracted, suggesting their direct association with the membrane part of the enzyme complex. Both deletion study and homologous expression study of the NQO9 subunit provided a clue that its hydrophobic N-terminal stretch plays an important role in such an association. In light of this observation and others, topological properties of the subunits in the NDH-1 enzyme complex are discussed. In addition, determination of stoichiometry of the peripheral subunits of the P. denitrificans NDH-1 was completed by radioimmunological methods. All the peripheral subunits are present as one molecule each in the enzyme complex. These results estimated the total number of cofactors in the P. denitrificans NDH-1; the enzyme complex contains one molecule of FMN and up to eight iron-sulfur clusters, 2x[2Fe-2S] and 6x[4Fe-4S], provided that the NQO6 subunit bears one [4Fe-4S] cluster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of cluster N5 as a fast-relaxing [4Fe-4S] cluster in the Nqo3 subunit of the proton-translocating NADH-ubiquinone oxidoreductase from Paracoccus denitrificans.

The NADH-quinone oxidoreductase from Paracoccus denitrificans consists of 14 subunits (Nqo1-14) and contains one FMN and eight iron-sulfur clusters. The Nqo3 subunit possesses fully conserved 11 Cys and 1 His in its N-terminal region and is considered to harbor three iron-sulfur clusters; however, only one binuclear (N1b) and one tetranuclear (N4) were previously identified. In this study, the ...

متن کامل

Respiratory Complex I in Bos taurus and Paracoccus denitrificans Pumps Four Protons across the Membrane for Every NADH Oxidized*

Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I (i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has n...

متن کامل

Biophysical and biochemical studies of bacterial NADH:quinone oxidoreductase (NDH-1).

The mitochondrial NADH-Q oxidoreductase (Complex I) is the most complex among the major mitochondrial energy coupling enzymes. Complex I from bovine heart and Neurosporu crussu contains 41 (1) and >32 (2) distinct subunits, respectively. In contrast, bacterial NDH-1 were shown to contain only 14 subunits both in Parucoccus denilrifcans (3) and in Escherichiu coli based on their gene structure (...

متن کامل

Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oxidoreductase (Complex I).

Diphenyleneiodonium (DPI) inhibits the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) on the substrate side of the Fe-S clusters. In the inhibited NADH-supplemented state all of the Fe-S clusters are oxidized, whereas the reduced minus oxidized difference spectrum of the protein-bound FMN can be visualized. It is characterized by troughs at 370 and 450 nm and a small increase of absor...

متن کامل

The Structural and Functional Basis of Catalysis Mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans

FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 40  شماره 

صفحات  -

تاریخ انتشار 1999